南昌市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.
(1)求平均每次下调的百分率.
(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?
如图所示,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.
(1)如果⊙O的半径为4,CD=,求∠BAC的度数;
(2)若点E为的中点,连接OE,CE.求证:CE平分∠OCD;
(3)在(1)的条件下,圆周上到直线AC距离为3的点有多少个?并说明理由.
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于65元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量y(箱)与涨价x(元/箱)之间的函数关系式;
(2)求当每箱苹果的销售价为多少元,批发商平均每天的销售利润W(元)可以获得最大?
如图,AB为的直径,AB=AC,BC交
于点D,AC交
于点E.
(1)求证:BD=CD;
(2)若AB=8,∠BAC=45°,求阴影部分的面积.
如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2),将△OAB绕点O逆时针旋转90°后得△OA1B1.
(1)在图中作出△OA1B1并直接写出A1,B1的坐标;
(2)求点B旋转到点B1所经过的路线长(结果保留π).
已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5).
(1)求该二次函数的解析式;
(2)求该二次函数图象与坐标轴的交点坐标;