游客
题文

已知:正方形的边长为1,射线与射线交于点,射线与射线交于点

(1)如图1,当点在线段上时,试猜想线段有怎样的数量关系?并证明你的猜想.
(2)设,当点在线段上运动时(不包括点),如图1,求关于的函数解析式,并指出的取值范围.
(3)当点在射线上运动时(不含端点),点在射线上运动.试判断以为圆心以为半径的和以为圆心以为半径的之间的位置关系.

(4)当点延长线上时,设交于点,如图2.问△与△能否相似,若能相似,求出的值,若不可能相似,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

(1)解不等式:>﹣2,并把解集在数轴上表示出来.
(2)解不等式组:,并将不等式组的解集在所给数轴上表示出来.

解下列方程组:
(1)
(2)
(3)解三元一次方程组:

如图1,矩形ABCD中,AB=2,BC=6,点P、Q分别是线段AD和线段BC上的动点,满足∠PQB=60°.
(1)填空:①∠ACB= 度;②PQ=
(2)设线段BC的中点为N,PQ与线段AC相交于点M,若△CMN为直角三角形,请直接写出满足条件的AP的长度.
(3)设AP=x,△PBQ与△ABC的重叠部分的面积为S,试求S与x的函数关系式和自变量x的取值范围.

如图,顶点为P(2,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,

(1)求该二次函数的关系式.
(2)若点A的坐标是(3,-3),求△OAP的面积.
(3)当点A在对称轴l右侧的二次函数图象上运动时,l上有一点N,且点M、N关于点P对称,试证明:∠ANM=∠ONM.

为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.
(1)求乙、丙两种树每棵各多少元?
(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?
(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号