(本小题共12分)如图,PA平面ABCD,四边形ABCD为矩形,PA=AB=
,AD=1,点F是PB的中点,点E在边BC上移动.
(1)当点E为BC的中点时, 证明EF//平面PAC;
(2)求三棱锥E-PAD的体积;
(3)证明:无论点E在边BC的何处,都有PEAF.
已知是等比数列
的前
项和,
,
,
成等差数列,且
.
(1)求数列的通项公式;
(2)是否存在正整数,使得
?若存在,求出符合条件的所有
的集合;
若不存在,说明理由.
已知中,内角
的对边分别为
,且
,
.
(1)求的值(2)设
,求
的面积.
以下茎叶图记录了甲、乙两组各四名同学的植树棵数。乙组记录中有一个数据模糊,无法确认,在图中经X表示。
(1)如果X=8,求乙组同学植树棵数的平均数和方差
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率
已知函数
(1)讨论函数在定义域内的极值点的个数;
(2)若函数在
=1处取得极值,对任意的
∈(0,+∞),
≥
恒成立,求实数b的取值范围;
(3)当>
>
时,求证:
已知数列的前n项和为
,
(1)证明:数列是等差数列,并求
;
(2)设,求证:
.