(本小题满分10分)选修4-4:极坐标与参数方程选讲
已知曲线的极坐标方程是
,直线
的参数方程是
(
为参数).
(Ⅰ)将曲线的极坐标方程化为直角坐标方程;
(Ⅱ)设直线与
轴的交点是
,
是曲线
上一动点,求
的最大值.
(本小题满分12分)
已知椭圆上任一点P,由点P向x轴作垂线段PQ,垂足为Q,点M在PQ上,且
,点M的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点D(0,-2)作直线l与曲线C交于A、B两点,设N是过点且平行于
轴的直线上一动点,满足
(O为原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线的方程;若不存在说明理由.
(本小题满分12分)
如图,是直角梯形,
又
,
,直线
与直线
所成的角为
.
(Ⅰ)求证:平面平面
;
(Ⅱ)求二面角的大小;
(本小题满分12分)
已知数列{}满足
,且点
在函数
的图象上,其中
=1,2,3,….
(Ⅰ)证明:数列{lg(1+)}是等比数列;
(Ⅱ)设=(1+
)(1+
)…(1+
),求
及数列{
}的通项.
(本小题满分12分)
某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市中学生运动会志愿者.
(Ⅰ)所选3人中女生人数为ξ,求ξ的分布列及数学期望.
(Ⅱ)在男生甲被选中的情况下,求女生乙也被选中的概率.
(本小题满分10分)
已知函数的周期为
(Ⅰ)求ω的值和函数的单调递增区间;
(Ⅱ)设△ABC的三边、
、
满足
,且边
所对的角为
,求此时函数
的值域.