如图,四棱锥中,底面ABCD为菱形,,Q是AD的中点.(Ⅰ)若,求证:平面PQB平面PAD;(Ⅱ)若平面APD平面ABCD,且,点M在线段PC上,试确定点M的位置,使二面角的大小为,并求出的值.
已知函数在处取得极值. (1)求的值; (2)求函数在上的最小值; (3)求证:对任意、,都有.
已知椭圆的离心率是,其左、右顶点分别为、,为短轴的一个端点,的面积为. (1)求椭圆的方程; (2)直线与轴交于,是椭圆上异于、的动点,直线、分别交直线于、两点,求证:为定值.
如图,四棱柱的底面为菱形,,交于点,平面,,. (1)证明:平面; (2)求三棱锥的体积.
在中,内角、、所对的边分别为,,,,且. (1)求角的值; (2)设函数,且图象上相邻两最高点间的距离为,求的取值范围.
已知公差不为0的等差数列满足,且,,成等比数列. (1)求数列的通项公式; (2)若,求数列的前项和为.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号