在数列和中,,,,其中且,.(Ⅰ)若,,求数列的前项和;(Ⅱ)证明:当时,数列中的任意三项都不能构成等比数列;(Ⅲ)设,,试问在区间上是否存在实数使得.若存在,求出的一切可能的取值及相应的集合;若不存在,试说明理由.
已知函数是的一个极值点. (Ⅰ)求函数的单调区间; (Ⅱ)若当时,恒成立,求的取值范围。
已知函数的图象与轴的交点为,它在轴右侧的第一个最高点和第一个最低点的坐标分别为和. (Ⅰ)求的解析式及的值; (Ⅱ)若锐角满足,求的值。
设,(),曲线在点处的切线垂直于轴. (Ⅰ) 求的值; (Ⅱ) 求函数的极值。
已知向量,, (Ⅰ)若,求实数的值; (Ⅱ)若,求实数的值。
已知实数集R,集合,集合,集合. (Ⅰ)求(C; (Ⅱ)若,求的取值范围。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号