一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为 .
如图,正方形BCDE的边长为a,已知AB=BC,将直角△ABE沿BE边折起,A点在平面BCDE上的射影为D点,则对翻折后的几何体有如下描述:
(1)AB与DE所成角的正切值是.
(2)三棱锥B-ACE的体积是a3.
(3)AB∥CD.
(4)平面EAB⊥平面ADE.
其中正确的叙述有 (写出所有正确结论的编号).
若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则 (写出所有正确结论的编号).
①四面体ABCD每组对棱相互垂直;
②四面体ABCD每个面的面积相等;
③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180°;
④连接四面体ABCD每组对棱中点的线段相互垂直平分;
⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.
已知直线l⊥平面α,直线m⊂平面β,给出下列命题:①α∥β⇒l⊥m.②α⊥β⇒l∥m.③l∥m⇒α⊥β.④l⊥m⇒α∥β,其中正确命题的序号是 .
已知平面α∥平面β,P是α,β外一点,过点P的直线m分别与α,β交于A,C,过点P的直线n分别与α,β交于B,D,且PA=6,AC=9,PD=8,则BD的长为 .
如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M,N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ= .