如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°,且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直底面ABCD.
(1)若G为AD边的中点,求证:BG⊥平面PAD;
(2)求证:AD⊥PB;
(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.
某投资公司年初用万元购置了一套生产设备并即刻生产产品,已知与生产产品相关的各种配套费用第一年需要支出
万元,第二年需要支出
万元,第三年需要支出
万元,……,每年都比上一年增加支出
万元,而每年的生产收入都为
万元.假设这套生产设备投入使用
年,
,生产成本等于生产设备购置费与这
年生产产品相关的各种配套费用的和,生产总利润
等于这
年的生产收入与生产成本的差. 请你根据这些信息解决下列问题:
(Ⅰ)若,求
的值;
(Ⅱ)若干年后,该投资公司对这套生产设备有两个处理方案:
方案一:当年平均生产利润取得最大值时,以万元的价格出售该套设备;
方案二:当生产总利润取得最大值时,以
万元的价格出售该套设备. 你认为哪个方案更合算?请说明理由.
已知.
(Ⅰ)写出的最小正周期
;
(Ⅱ)若的图象关于直线
对称,并且
,求
的值.
已知,关于
的不等式
的解集不是空集,求实数
的取值范围.
已知曲线的参数方程为
是参数
,
是曲线
与
轴正半轴的交点.以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,求经过点
与曲线
只有一个公共点的直线
的极坐标方程.
如图,四边形的外接圆为⊙
,
是⊙
的切线,
的延长线与
相交于点
,
.
求证:.