如图,在平面直角坐标系中,抛物线的顶点A的坐标为(3,15),且过点(﹣2,10),对称轴AB交x轴于点B,点E是线段AB上一动点,以EB为边在对称轴右侧作矩形EBCD,使得点D恰好落在抛物线上,点D′是点D关于直线EC的轴对称点.
(1)求抛物线的解析式;
(2)若点D′恰好落在y轴上的点(0,6)时,求此时D点的坐标;
(3)直线CD′交对称轴AB于点F;
①当点D′在对称轴AB的左侧时,且△ED′F∽△CDE,求出DE:DC的值.
②连结B D′,是否存在点E,使△E D′B为等腰三角形?若存在,请直接写出BE:BC的值;若不存在请说明理由.
(本题10分)如图,四边形ABCD中,∠ABC=90°,CD⊥AD,,
(1)求证:AB=BC;
(2)过点B作BE⊥AD于E,若四边形ABCD的面积为,求BE的长.
(本题8分)已知,如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE,AC平分∠BAD.求证:四边形ABCD为菱形.
计算(每小题5分,共10分):
(1);
(2).
(本题14分)已知:如图,在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD的边AB、BC、DA上,AE=2.
(1)如图(1),当四边形EFGH为正方形时,求△GFC的面积.
(2)如图(2),当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用含a的代数式表示).
(3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.
(本题11分)“五一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x之间的关系如图所示.
(1)求a的值.
(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.
(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问:检票一开始至少需要同时开放几个检票口?