(本小题满分12分)已知等差数列{an}的首项为1,前n项和为,且S1,S2,S4成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)记为数列
的前
项和,是否存在正整数n,使得
?若存在,求
的最大值;若不存在,说明理由.
有4个不同的球,4个不同的盒子,现在要把球全部放入盒内.
(1)共有几种放法?
(2)恰有一个盒不放球,共有几种放法?
若(2+x+x2) 3的展开式中的常数项为a,求
(3x2-1)dx.
四张卡片上分别标有数字“2”“0”“0”“9”,其中“9”可当“6”用,则由这四张卡片可组成不同的四位数有多少个?
如图,点P(0,-1)是椭圆C1:=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.
(1)求椭圆C1的方程;
(2)求当△ABD的面积取最大值时,直线l1的方程.
已知A,B,C是椭圆W:+y2=1上的三个点,O是坐标原点.
(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;
(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.