(本小题满分12分)某校高三年级文科学生600名,从参加期末考试的学生中随机抽出某班学生(该班共50名同学),并统计了他们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下表:
分组 |
频数 |
频率 |
[45,60) |
2 |
0.04 |
[60,75) |
4 |
0.08 |
[75,90) |
8 |
0.16 |
[90,105) |
11 |
0.22 |
[105,120) |
15 |
0.30 |
[120,135) |
a |
b |
[135,150] |
4 |
0.08 |
合计 |
50 |
1 |
(1)写出a、b的值;
(2)估计该校文科生数学成绩在120分以上学生人数;
(3)该班为提高整体数学成绩,决定成立“二帮一”小组,即从成绩在[135,150]中选两位同学,来帮助成绩在[45,60)中的某一位同学.已知甲同学的成绩为56分, 乙同学的成绩为145分,求甲乙在同一小组的概率.
(本小题满分14分)
设函数Z),曲线
在点
处的切线方程为
。
(1)求的解析式;
(2)证明:函数的图象是一个中心对称图形,并求其对称中心;
(3)证明:曲线上任一点的切线与直线
和直线
所围三角形的面积为定值,并求出此定值。
(本小题满分14分)
如图所示,已知曲线交于点O、A,直线
与曲线
、
分别交于点D、B,连结OD,DA,AB.
(1)求证:曲边四边形ABOD(阴影部分:OB为抛物线弧)的面积的函数表达式为
(2)求函数在区间
上的最大值.
(本小题满分13分)
甲、乙两人各射击一次,击中目标的概率分别是和
,假设两个射击是否击中目标,相互之间没有影响;每人各次射击是否中目标相互之间也没有影响。
(1)求甲射击4次,至少有1次未击中目标的概率;
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;
(3)假设某人连续2次未击中目标,则中止其射击。则乙恰好射击5次后被中止射击的概率是多少?
(本小题满分13分)
设函数,已知
是奇函数.
(Ⅰ)求、
的值;(Ⅱ)求
的单调区间与极值.
(本小题满分13分)
已知的展开式中第五项的系数与第三项的系数的比是10:1
(1)求展开式中各项系数的和;
(2)求展开式中含的项;