(本小题满分13分)已知圆C的方程为:
(1)求的取值范围;
(2)若圆C与直线交于M、N两点,且
,求
的值.
(3)设直线与圆
交于
,
两点,是否存在实数
,使得以
为直径的圆过原点,若存在,求出实数
的值;若不存在,请说明理由.
已知数列满足:
数列
满足
。
(1)若是等差数列,且
求
的值及
的通项公式;
已知的周长为
,且
(1)求边的长;
(2)若的面积为
,求角
.
已知向量.
(1)若,求
;
(2)求的最大值.
改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2005年五年间每年考入大学的人数,为了方便计算,2001年编号为1,2002年编号为2,……,2005年编号为5,数据如下:
年份(x) |
1 |
2 |
3 |
4 |
5 |
人数(y) |
3 |
5 |
8 |
11 |
13 |
(1)从这5年中随机抽取两年,求考入大学的人数至少有年多于10人的概率.
(2)根据这年的数据,利用最小二乘法求出
关于
的回归方程
,并计算第
年的估计值。
参考:用最小二乘法求线性回归方程系数公式
某中学对高三年级进行身高统计,测量随机抽取的20名学生的身高,其频率分布直方图如下(单位:cm)
(1)根据频率分布直方图,求出这20名学生身高中位数的估计值和平均数的估计值.
(2)在身高为140—160的学生中任选2个,求至少有一人的身高在150—160之间的概率.