(本题8分)计算:
(1)
(2)
(本题8分)计算:
(1)
(2)
(本题12分)如图,点B(2,2)在双曲线(x>0)上,点C在双曲线
(x<0)上,点A是x轴上一动点,连接BC、AC、AB.
(1)求k的值;
(2)如图1,当BC∥x轴时,△ABC的面积;
(3)如图2,当点A运动到x轴正半轴时,若△ABC是等腰直角三角形,∠BAC=90°,求点A的坐标.
(本题12分)如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动,设运动的时间为t s(0<t<6),试尝试探究下列问题:
(1)当t为何值时,△PBQ的面积等于8cm?
(2)当t为何值时,△PBQ的面积最大,并求出这个最大面积;
(3)当t为何值时,△PDQ是等腰三角形?写出探索过程.
(本题10分)一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?