(本小题7分)已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(1)当x=2时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
已知一个圆与轴相切,在直线
上截得弦长为2
,且圆心在直线
上,求此圆的方程.
过椭圆的右焦点
的直线L与圆
相切,并且直线L过抛物线
的焦点
。
(1)求、
的坐标;
(2)求直线L的方程。
设分别是椭圆
的左、右焦点.
⑴若是该椭圆上的一点,且
,求
的面积;
⑵若是该椭圆上的一个动点,求
的最大值和最小值;
⑶设过定点的直线
与椭圆交于不同的两点
,且
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
已知点,
,
在抛物线
(
)上,
的重心与此抛物线的焦点
重合(如图)
⑴写出该抛物线的方程和焦点的坐标;
⑵求线段中点
的坐标;
⑶求所在直线的方程.
如图,已知正三棱柱—
的底面边长是
,
是侧棱
的中点,直线
与侧面
所成的角为
.
⑴求此正三棱柱的侧棱长;
⑵求二面角的平面角的正切值;
⑶求直线与平面
的所成角的正弦值.