(本小题7分)已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(1)当x=2时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
在直角坐标系中,已知中心在原点,离心率为
的椭圆E的一个焦点为圆
的圆心.
⑴求椭圆E的方程;
⑵设P是椭圆E上一点,过P作两条斜率之积为的直线
,当直线
都与圆
相切时,求P点坐标.
某个公园有个池塘,其形状为直角△ABC,∠C=90°,AB=2百米,BC=1百米.
(1)现在准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D,E,F,如图(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF面积S△DEF的最大值;
(2)现在准备新建造一个荷塘,分别在AB,BC,CA上取点D,E,F,如图(2),建造△DEF连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,求△DEF边长的最小值.
如图长方体中,底面
是正方形,
是
的中点,
是棱
上任意一点.
⑴求证:;
⑵如果,求
的长.
设向量.
⑴若,求
的值;
⑵设函数,求
的最大值.
已知函数,其中
是实数,设
为该函数的图象上的两点,且
.
⑴指出函数的单调区间;
⑵若函数的图象在点
处的切线互相垂直,且
,求
的最小值;
⑶若函数的图象在点
处的切线重合,求
的取值范围.