(本小题满分13分)如图,已知圆E:,点
,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(Ⅰ)求动点Q的轨迹的方程;
(Ⅱ)设直线与(Ⅰ)中轨迹
相交于
两点, 直线
的斜率分别为
(其中
).△
的面积为
, 以
为直径的圆的面积分别为
.若
恰好构成等比数列, 求
的取值范围.
已知内角
所对的边分别是
,且
.
(1)若,求
的值;
(2)求函数的值域.
设△ABC三个内角A、B、C所对的边分别为a,b,c. 已知C=,acosA=bcosB.
(1)求角A的大小;
(2)如图,在△ABC的外角∠ACD内取一点P,使得PC=2.过点P分别作直线CA、CD的垂线PM、PN,垂足分别是M、N.设∠PCA=α,求PM+PN的最大值及此时α的取值.
在斜三角形中,角A,B,C的对边分别为 a,b,c.
(1)若,求
的值;
(2)若,求
的值.
已知函数,
,
.
(1)求函数的值域;
(2)若函数的最小正周期为
,则当
时,求
的单调递减区间.
已知各项均为正数的等比数列中,
.
(1)求公比;
(2)若分别为等差数列
的第3项和第5项,求数列
的通项公式.