列方程解应用题:一件工作,甲单独完成要20小时,乙单独完成要12小时,现在两人合作,一段时间后,乙有事退出,结果甲又单独干了4小时才完成,两人合作了多长时间?
如图,用剪刀沿直线剪去五边形的一个角得到一个新的五边形,你能想出剪去一个角的其它方法吗?在图(2)(3)中画出示意图,并回答剪去一个角后剩下的是几边形?并求出剪后得到的多边形的内角和.
过A、B、C、D、E五个点中任意三点画三角形;
(1)其中以AB为一边可以画出 个三角形;
(2)其中以C为顶点可以画出 个三角形.
(1)如图1,已知∠1=∠2,∠B=∠C,可推得AB∥CD,理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD( ),
∴∠2=∠CGD(等量代换)
∴CE∥BF( )
∴∠ ECD =∠BFD( )
又∵∠B=∠C(已知)
∴∠BFD=∠B( )
∴AB∥CD( ).
(2)已知,如图2,AD∥BE,∠1=∠2,∠A与∠E相等吗?试说明理由.
探索:在图1至图3中,已知△ABC的面积为a,
(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S1,则S1= (用含a的代数式表示)
(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2= (用含a的代数式表示)
(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3).若阴影部分的面积为S3,则S3= (用含a的代数式表示),并运用上述(2)的结论写出理由.
发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次.可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的 倍.
应用:要在一块足够大的空地上栽种花卉,工程人员进行了如下的图案设计:首先在△ABC的空地上种红花,然后将△ABC向外扩展三次(图4已给出了前两次扩展的图案).在第一次扩展区域内种谎话,第二次扩展区域内种紫花,第三次扩展区域内种蓝花.如果种红花的区域(即△ABC)的面积是10平方米,请你运用上述结论求出:
①种紫花的区域的面积;
②种蓝花的区域的面积.
先阅读下面的材料,然后解答问题:通过观察,发现方程:的解为
;
的解为
;
的解为
;…
(1)观察上述方程的解,猜想关于x的方程的解是 ;
(2)根据上面的规律,猜想关于x的方程的解是 ;
(3)把关于x的方程变形为方程
的形式是 ,方程的解是 .