如图,二次函数的图象与x轴交于点A(﹣1,0),B(2,0),与y轴相交于点C.
(1)求二次函数的解析式;
(2)若点E是第一象限的抛物线上的一个动点,当四边形ABEC的面积最大时,求点E的坐标,并求出四边形ABEC的最大面积;
(3)若点M在抛物线上,且在y轴的右侧.⊙ M与y轴相切,切点为D.以C,D,M为顶点的三角形与△AOC相似,求点M的坐标.
如图,直线 与双曲线 交于点 , , .
(1)求直线与双曲线的解析式.
(2)点 在 轴上,如果 ,求点 的坐标.
已知关于 的一元二次方程 .
(1)求证:方程有两个不相等的实数根.
(2)如果方程的两实数根为 , ,且 ,求 的值.
“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:
成绩 分 |
7 |
8 |
9 |
10 |
人数 人 |
2 |
5 |
4 |
4 |
(1)这组数据的众数是 ,中位数是 .
(2)已知获得10分的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率.
如图,已知 , , .
求证: .
如图,已知抛物线 过点 , 和点 , .过点 作直线 轴,交 轴于点 .
(1)求抛物线的解析式;
(2)在抛物线上取一点 ,过点 作直线 的垂线,垂足为 .连接 ,使得以 , , 为顶点的三角形与 相似,求出对应点 的坐标;
(3)抛物线上是否存在点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由.