已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.
(1)求出△ABE和△BCF重叠部分(即△BEG)的面积;
(2)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.
先化简,再求值:,其中
解下列方程:
(1)用配方法解方程;
(2)用公式法解方程
某农户去年承包荒山若干亩,投资7800 元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a元,在果园每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1000千克,需8 人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.
(1)分别用a,b表示两种方式出售水果的收入?
(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.
(3)该农户加强果园管理,力争到明年纯收入达到15000元,那么纯收入增长率是多少? (纯收入=总收入-总支出,该农户采用了(2)中较好的出售方式出售)
为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车司机的行程如下(单位:千米):+15,-4,+13,-10,-12,+3,-13,-17.
(1)将最后一名老师送到目的地时,小王距出车地点的距离是多少?
(2)若汽车耗油量为0.4升每千米,这天下午汽车共耗油多少升?
(1)当K为多少时,代数式
(2)关于x的多项式-2x2+mx+nx2-5x-1的值与x的取值无关,求m、n的值.