某公司经销一种商品,每件商品的成本为50元,经市场的调查,在一段时间内,销售量(件)随销售单价x(元/件)的变化而变化,具体关系式为
,
设这种商品在这段时间内的销售利润为y(元),解答如下问题:
(1)求y与x的关系式;
(2)当x取何值时,y的值最大?
(3)如果物价部门规定这种商品的销售单价不得高于80元/件,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
解答题如图△ABC内接于圆O,I是△ABC的内心,AI的延长线交圆O于点D.
(1)求证:BD=DI;
(2)若OI⊥AD,求的值.
解答题已知抛物线y=x2﹣2x+m与x轴有两个不同交点A(x1,0)、B(x2,0)并且x1<x2,x12+x22=4,
①求这条抛物线的解析式;
②设抛物线的顶点为C,P是抛物线上一点,且∠PAC=90°,求P点坐标及△PAC内切圆的面积.
解答题如图,在△ABC中,O是内心,点E,F都在大边BC上,已知BF=BA,CE=CA.
(1)求证:O是△AEF的外心;
(2)若∠B=40°,∠C=30°,求∠EOF的大小.
有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣2,﹣3和﹣4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y=﹣x﹣2上的概率.
小英过生日,同学们为她设置了一个游戏:把三个相同的乒乓球分别标上了1、2、3,放进一个盒子摇匀,另外拿两个相同的乒乓球也分别标上1、2,放进另外一个盒子里.现从两个盒子分别抽出1个球,若两个球的数字之积为奇数,则小英唱歌,若两个球的数字之积为偶数,则小英跳舞.问:小英做哪种游戏概率大?