将绕点
按逆时针方向旋转
度,并使各边长变为原来的
倍,得
,如图①,我们将这种变换记为
.
(1)如图①,对作变换
得
,则
;直线
与直线
所夹的锐角为 度;
(2)如图②,中,
,
,对
作变换
得
,使点
、
、
在同一直线上,且四边形
为矩形,求
和
的值;
(3)如图③,中,
,
,
,对
作变换
得
,使点
、
、
在同一直线上,且四边形
为平行四边形,求
和
的值.
有两个可以自由转动的均匀转盘,都被分成了3等份,并在每份内均标有数字,如图所示.规则如下:分别转动转盘,两个转盘停止后,将两个指针所指份内的数字相乘,(若指针停止在等分线上,那么重转一次,直到指针指向某份为止).
(1)用列表或画树状图法分别求出数字之积为3的倍数和数字之积为5的倍数的概率;
(2)小明和小亮想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小明得2分;数字之积为5的倍数时,小亮得3分.这个游戏对双方公平吗?若认为公平请说明理由;若认为不公平,试修改得分规定,使游戏对双方公平.
某校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为,图①中m的值是;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2 名工人,结果比计划提前3小时完成任务。若每人每小时绿化面积相同,求每人每小时的绿化面积。
若用半径为6㎝,圆心角为120° 的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径是㎝.
已知抛物线(
≠
)与
轴交于点A(1,0)和B(
,0),抛物线的顶点为P.
(Ⅰ)若点P(-1,-3),求抛物线的解析式;
(Ⅱ)设点P(-1,),
>0,点Q是
轴上的一个动点,当QB+QP的最小值等于5时,求抛物线的解析式和Q点的坐标;
(Ⅲ)若抛物线经过点M(,-
),
>0,求
的取值范围.