(本小题满分12分)已知椭圆C:过点
,离心率为
,点
分别为其左右焦点.
(1)求椭圆C的标准方程;
(2)若上存在两个点
,椭圆上有两个点
满足,
三点共线,
三点共线,且
.求四边形
面积的最小值.
已知函数且函数
的图象经过点(1,2).
(1)求m的值;(2)证明函数在(1,
)上是增函数.
已知定义在实数集R上的奇函数有最小正周期2,且当
时,
.
(1)求在
上的解析式;
(2)试判断在
上的单调性,并证明;
(3)是否存在实数,使方程
在R上有解?若存在,求出
的范围.若不存在,说明理由.
(1)化简求值:;
(2)求函数的定义域.
已知函数、
.
(1)讨论函数的奇偶性(只写结论,不要求证明);
(2)在构成函数的映射
中,当输入值为
和2时分别对应的输出值为
和
,求
、
的值;
(3)在(2)的条件下,求函数(
)的最大值.
定义在上的函数
满足
且当
时,
都有;
(1)判断在
上的单调性,并证明你的结论.
(2)若是奇函数, 不等式
对所有的
恒成立,
求的取值范围.