(本小题满分12分)已知椭圆C:过点
,离心率为
,点
分别为其左右焦点.
(1)求椭圆C的标准方程;
(2)若上存在两个点
,椭圆上有两个点
满足,
三点共线,
三点共线,且
.求四边形
面积的最小值.
已知等差数列的公差
大于0,且
、
是方程
的两根.数列
的前
项和为
,满足
(Ⅰ)求数列,
的通项公式;
(Ⅱ)设数列的前
项和为
,记
.若
为数列
中的最大项,求实数
的取值范围.
某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种
产品受欢迎的概率分别为,且不同种产品是否受欢迎相互独立.记
为公司向市场投放三种新型产品受欢迎的数量,其分布列为
![]() |
(Ⅰ)求该公司至少有一种产品受欢迎的概率;
(Ⅱ)求的值;
(Ⅲ)求数学期望.
如图,四棱锥的底面
是矩形,
,且侧面
是正三角形,平面
平面
,
(Ⅰ)求证:;
(Ⅱ)在棱上是否存在一点
,使得二面角
的大小为45°.若存在,试求
的值,若不存在,请说明理由.
已知函数.
(1)若,求
的值;
(2)设△三内角
所对边分别为
且
,求
在
上的值域.
已知函数
(Ⅰ)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(Ⅱ)令g(x)= f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(Ⅲ)当x∈(0,e]时,证明: