(本小题满分12分)某大型企业一天中不同时刻的用电量(单位:万千瓦时)关于时间
(
,单位:小时)的函数
近似地满足
,下图是该企业一天中在0点至12点时间段用电量
与时间
的大致图象.
(Ⅰ)根据图象,求,
,
,
的值;
(Ⅱ)若某日的供电量(万千瓦时)与时间
(小时)近似满足函数关系式
(
).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1).
参考数据:
![]() |
10 |
11 |
12 |
11.5 |
11.25 |
11.75 |
11.625 |
11.6875 |
![]() |
2.25 |
2.433 |
2.5 |
2.48 |
2.462 |
2.496 |
2.490 |
2.493 |
![]() |
5 |
3.5 |
2 |
2.75 |
3. 125 |
2.375 |
2.563 |
2.469 |
平面直角坐标系中,直线的参数方程是
,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为
(1)求直线的极坐标方程
(2)若直线与曲线C相交于A,B两点,求|AB|
设矩阵,矩阵A属于特征值
的一个特征向量
,属于特征值
的一个特征向量
,求
的值
(本小题满分为16分)已知函数.
(1)若,求函数
的极值,并指出极大值还是极小值;
(2)若,求函数
在
上的最值;
(3)若,求证:在区间
上,函数
的图象在
的图象下方.
(本小题满分为16分)设A,B分别为椭圆的左、右顶点,椭圆的长轴长为
,且点
在该椭圆上.
(1)求椭圆的方程;
(2)设为直线
上不同于点
的任意一点,若直线
与椭圆相交于异于
的点
,证明:△
为钝角三角形.
(本小题满分为16分)为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.
(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?
(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?