如图所示,两根足够长的光滑金属导轨,相距为L=10cm,竖直放置,导轨上端连接着电阻R1=1Ω,质量为m=0.01kg、电阻为R2=0.2Ω的金属杆ab与导轨垂直并接触良好,导轨电阻不计。整个装置处于与导轨平面垂直的磁感应强度为B=1T的匀强磁场中。ab杆由静止释放,经过一段时间后达到最大速率,g取10m/s2,求此时:
⑴杆的最大速率;
⑵ab间的电压;
⑶电阻R1消耗的电功率。
如图所示,在竖直平面内,粗糙的斜面轨道AB的下端与光滑的圆弧轨道BCD相切于B, C是最低点,圆心角∠BOC=37°,D与圆心O等高,圆弧轨道半径R=1.0m,现有一个质量为m=0.2kg可视为质点的小物体,从D点的正上方E点处自由下落,DE距离h=1.6m,物体与斜面AB之间的动摩擦因数μ=0.5。取sin37o=0.6,cos37o=0.8, g=10m/s2。求:
⑴物体第一次通过C点时轨道对物体的支持力FN的大小;
⑵要使物体不从斜面顶端飞出,斜面的长度LAB至少要多长;
⑶若斜面已经满足⑵要求,物体从E点开始下落,直至最后在光滑圆弧轨道做周期性运动,在此过程中系统因摩擦所产生的热量Q的大小。
如图所示,等腰直角三角形ABC区域内有磁感应强度大小为B,方向垂直纸面匈里的匀强磁场,AB边水平。磁场下方有一方向水平向右的匀强电场。现有一质量为m电量为q的负离子(重力不计),以速度v0沿图中虚线垂直电场且正对三角形ABC的顶点C射入,穿过电场区域后,负离子从AB边进入磁场,又从AB边射出。已知AB=,电场宽度L=
。求:
(1)负离子在AB边上入射点与出射点的距离;
(2)保持电场宽度L不变,调整电场上边界与磁场边界AB间的距离及电场强度的大小,使负离子在磁场中运动的时间最长,则此时电场强度E多大?
一辆总质量为1500kg的汽车,由静止开始沿平直公路以额定功率P=90kW启动,并保持额定功率行驶。汽车匀速运动过程中,突然发现前方有障碍物,立即以大小为5m/s2的加速度开始刹车,汽车最后停下来。整个过程中,汽车发生的位移是765m,刹车之前汽车受到的阻力恒为3000N。求:
(1)汽车刹车过程位移的大小;
(2)汽车保持额定功率运动的时间。
一个质量m=0.1kg的正方形金属框总电阻R=0.5Ω,金属框放在表面绝缘且光滑的斜面顶端(金属框上边与AA′重合),自静止开始沿斜面下滑,下滑过程中穿过一段边界与斜面底边BB′平行、宽度为d
的匀强磁场后滑至斜面底端(金属框下边与BB′重合),设金属框在下滑过程中的速度为v,与此对应的位移为s,那么v2—s图象如图所示,已知匀强磁场方向垂直斜面向上.试问:
(1)根据v2—s图象所提供的信息,计算出斜面倾角θ和匀强磁场宽度d
(2)金属框从进入磁场到穿出磁场所用时间是多少?
(3)匀强磁场的磁感应强度多大?
如图甲所示,一足够长阻值不计的光滑平行金属导轨MN、PQ之间的距离L=1.0m,NQ两端连接阻值R=3.0Ω的电阻,磁感应强度为B的匀强磁场垂直于导轨所在平面向上,导轨平面与水平面间的夹角θ=300。一质量m=0.20kg,阻值r=0.50Ω的金属棒垂直于导轨放置并用绝缘细线通过光滑的定滑轮与质量M=0.60kg的重物相连。细线与金属导轨平行。金属棒沿导轨向上滑行的速度v与时间t之间的关系如图乙所示,已知金属棒在0~0.3s内通过的电量是0.3~0.6s内通过电量的1/3,g=10m/s2,求:
(1)0~0.3s内棒通过的位移;
(2)金属棒在0~0.6s内产生的热量。