如图,M是直线AB外一点,过点M的直线MN与AB交于点N,过点M画直线CD,使得CD∥AB.
我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)),图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为、
、
.若正方形EFGH的边长为2,则
=.
如图,在平面直角坐标系xOy中,抛物线过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.
(1)求b、c的值;
(2)当t为何值时,点D落在抛物线上;
(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.
为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/时;当车流密度为20辆/千米时,车流速度为80千米/时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.
(1)求彩虹桥上车流密度为100辆/千米时的车流速度;
(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/时且小于60千米/时,应控制彩虹桥上的车流密度在什么范围内?
(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.
如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.
(1)求⊙O的半径OD;
(2)求证:AE是⊙O的切线;
(3)求图中两部分阴影面积的和.
今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:
(1)抽取的部分同学的人数是多少?
(2)补全直方图的空缺部分.
(3)若九年级有400名学生,估计该年级去打扫街道的人数.
(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.(用A表示“打扫街道”;用B表示“去敬老院服务”;用C表示“法制宣传”)