游客
题文

在袋子中装有10个大小相同的小球,其中黑球有3个,白球有n(2≤n≤5,且n≠3)个,其余的球为红球.
(Ⅰ)若n=5,从袋中任取1个球,记下颜色后放回,连续取三次,求三次取出的球中恰有2个红球的概率;
(Ⅱ)从袋里任意取出2个球,如果这两个球的颜色相同的概率是,求红球的个数;
(Ⅲ)在(Ⅱ)的条件下,从袋里任意取出2个球.若取出1个白球记1分,取出1个黑球记2分,取出1个红球记3分.用ξ表示取出的2个球所得分数的和,写出ξ的分布列,并求ξ的数学期望Eξ.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

选修4-1:几何证明选讲
如图,已知C点在⊙O直径的延长线上,CA切⊙O于A点,DC是∠ACB的平分线,交AE于F点,交AB于D点.

(Ⅰ)求∠ADF的度数;
(Ⅱ)若AB=AC,求AC:BC.

已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若上恒成立,求实数的取值范围;
(Ⅲ)在(Ⅱ)的条件下,对任意的,求证:

已知离心率为的椭圆的右焦点是圆的圆心,过椭圆上的动点作圆的两条切线分别交轴于(与点不重合)两点.

(Ⅰ)求椭圆方程;
(Ⅱ)求线段长的最大值,并求此时点的坐标.

如图,AB是半圆O的直径,C是半圆O上除A、B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,

(Ⅰ)证明:平面ADE⊥平面ACD;
(Ⅱ)当三棱锥C-ADE体积最大时,求二面角D-AE-B的余弦值.

某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下:

假设甲、乙两种酸奶独立销售且日销售量相互独立.
(Ⅰ)写出频率分布直方图(甲)中的a的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,试比较的大小;(只需写出结论)
(Ⅱ)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率;
(Ⅲ)记X表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求X的数学期望.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号