阅读下面的文字,解答问题.
大家知道是无理数,而无理数是无限不循环小数,因此
的小数部分我们不可能全部地写出来,但是由于1<
<2,所以
的整数部分为1,将
减去其整数部分1,差就是小数部分
﹣1,根据以上的内容,解答下面的问题:
(1)的整数部分是 ,小数部分是 ;
(2)1+的整数部分是 ,小数部分是 ;
(3)若设2+整数部分是x,小数部分是y,求x﹣
y的值.
菱形与正方形的形状有差异,我们将菱形与正方形的接近程度记为“接近度”.设菱形相邻的两个内角的度数分别为m°和n°,将菱形与正方形的“接近度”定义为|m-n|.在平面直角坐标系中,抛物线y=x2+bx+c(b<0)交y轴于点A(与原点O不同),以AO为边作菱形OAPQ.
(1)当c=-b时,抛物线上是否存在点P,使菱形OAPQ与正方形的“接近度”为0,请说明理由.
(2)当c>0时,对于任意的b,抛物线y=x2+bx+c上是否存在点P,满足菱形OAPQ与正方形的“接近度”为60?若存在,请求出所有满足条件的b与c的关系式;若不存在,请说明理由.
已知反比例函数y=(x>0)的图象经过点A(2,a)(a>0),过点A作AB⊥x轴,垂足为点B,将线段AB沿x轴正方向平移,与反比例函数y=
(x>0)的图象相交于点F(p,q).
(1)当F点恰好为线段的中点时,求直线AF的解析式(用含a的代数式表示);
(2)若直线AF分别与x轴、y轴交于点M、N,当q=-a2+5a时,令S=S△ANO+S△MFO(其中O是原点),求S的取值范围.
如图,BC是半圆O的直径,点A在半圆O上,点D是AC的中点,点E在上运动.若AB=2,tan∠ACB=
,请问:分别以点A、E、D为直角顶点的等腰三角形AED存在吗?请逐一说明理由.
如图,P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,垂足分别为点E、F.请判断AP与EF的数量关系,并证明你的判断.
如图,点E为平行四边形ABCD中DC延长线上的一点,且CE=DC.连结AE,分别交BC、BD于点F、G.若BD=6,求DG的长.