质量为m,带电量为q的液滴以速度v沿与水平方向成45°角斜向上进入正交的匀强电场和匀强磁场叠加区域,电场强度方向水平向右,磁场方向垂直纸面向里,如图所示.液滴带正电荷,在重力、电场力及磁场力共同作用下在场区做匀速直线运动.重力加速度为g.试求:
(1)电场强度E和磁感应强度B各多大?
(2)当液滴运动到某一点A时,电场方向突然变为竖直向上,大小不改变,不考虑因电场变化而产生的影响,求此后液滴做圆周运动的半径.
如图甲,MN、PQ两条平行的光滑金属轨道与水平面成θ = 37°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 0.5T。质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r。现从静止释放杆ab,测得最大速度为vm。改变电阻箱的阻值R,得到vm与R的关系如图乙所示。已知轨距为L = 2m,重力加速度g取l0m/s2,轨道足够长且电阻不计。求:
(1)杆ab下滑过程中感应电流的方向及R=0时最大感应电动势E的大小;
(2)金属杆的质量m和阻值r;
(3)当R = 4Ω时,求回路瞬时电功率每增加1W的过程中合外力对杆做的功W。
如图所示,竖直平面内有足够长的金属导轨,轨距0.2m,金属导体棒ab可在导轨上无摩擦地上下滑动,ab的电阻为0.4Ω,导轨电阻不计,导体棒ab的质量为0.4g,垂直纸面向里的匀强磁场的磁应强度为0.2T,且磁场区域足够大,当ab导体棒自由下落0.4s时,突然接通电键K,求:(g取10m/s2)
(1)K接通的瞬间,ab导体棒的加速度;
(2)ab导体棒匀速下落的速度。
如图所示,水平方向大小为B的匀强磁场的上下边界分别是MN、PQ,磁场宽度为L。一个边长为
的正方形导线框(L>2
)从磁场上方竖直下落,线框的质量为m,电阻为R,运动过程中上下两边始终与磁场边界平行,若线框进入磁场过程中感应电流保持不变。(运动过程中空气阻力不计,重力加速度为g。)求:
(1)线框下端进入磁场时的速度;
(2)线框下端即将离开磁场时线框的加速度;
(3)若线框上端离开磁场时线框恰好保持平衡,求线框离开磁场的过程中流经线框电量q和线框完全通过磁场产生的热量Q。
如图所示,一个质量为m,带q(q >0)电量的粒子在BC边上的M点以速度v垂直于BC边飞入正三角形ABC。为了使该粒子能在AC边上的N点垂直于AC边飞出该三角形,可在适当的位置加一个垂直于纸面向里、磁感应强度为B的匀强磁场。若此磁场仅分布在一个也是正三角形的区域内,且不计粒子的重力,试求:
(1)画出正三角形区域磁场的边长最小时的磁场区域及粒子运动的轨迹;
(2)该粒子在磁场里运动的时间t;
(3)该正三角形区域磁场的最小边长。
飞行时间质谱仪可对气体分子进行分析。如图所示,在真空状态下,脉冲阀P喷出微量气体,经激光照射产生电荷量为q、质量为m的正离子,自a板小孔进入a、b间的加速电场,从b板小孔射出,沿中线方向进入M、N板间的偏转控制区,到达探测器。已知a、b板间距为d,极板M、N的长度和间距均为L。不计离子重力及进入a板时的初速度。
(1)当a、b间的电压为U1,在M、N间加上适当的电压U2,使离子到达探测器。求离子到达探测器的全部飞行时间。
(2)为保证离子不打在极板上,试求U2与U1的关系。