如图所示,倾角为30°的光滑斜面与粗糙的水平面平滑连接.现将一滑块(可视为质点)从斜面上的A点由静止释放,最终停在水平面上的C点.已知A点距水平面的高度h=0.8 m,B点距C点的距离L=2.0 m.(滑块经过B点时没有能量损失),求:
(1)滑块在运动过程中的最大速度;
(2)滑块与水平面间的动摩擦因数μ;
(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.
杂技演员在进行“顶杆”表演时,用的是一根质量可忽略不计的长竹竿,质量为30 kg的演员自杆顶由静止开始下滑,滑到杆底时速度正好为零.已知竹竿底部与下面顶杆人肩部之间有一传感器,传感器显示顶杆人肩部的受力情况如图所示,取g=" 10" m/s2.求:
(1)杆上的人下滑过程中的最大速度;
(2)竹竿的长度.
如图,一质量为1 kg的小球套在一根固定的直杆上,直杆与水平面夹角θ为30°。现小球在F=20N的竖直向上的拉力作用下,从A点静止出发沿杆向上运动,已知杆与球间的动摩擦因数m为。试求:
(1)小球运动的加速度a1;
(2)若F作用1.2s后撤去,小球上滑过程中距A点最大距离sm;
(3)若从撤去力F开始计时,小球经多长时间将经过距A点上方为2.25m的B点。
如图所示,质量为m=0.5kg的光滑小球被细线系住,放在倾角为°的斜面上。已知线与竖直方向夹角
=30°,斜面质量为M=3kg,整个装置静置于粗糙水平面上。求:
(1)悬线对小球拉力的大小;
(2)地面对斜面的摩擦力的大小和方向。
飞机着陆后做匀变速直线运动,10s内前进450m,此时速度减为着陆时速度的一半。试求:(1)飞机着陆时的速度(2)飞机着陆后30s时距着陆点多远。
过山车是游乐场中常见的设施。下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径R1=2.0m、R2=1.4m。一个质量为m=1.0kg的小球(视为质点),从轨道的左侧A点以v0=12.0m/s的初速度沿轨道向右运动,A、B间距L1=6.0mm。小球与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度取g=10m/s2,计算结果保留小数点后一位数字。试求
⑴小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;
⑵如果小球恰能通过第二圆形轨道,B、C间距应是多少;
⑶在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径R3应满足的条件;
⑷小球最终停留点与起点的距离。