将油箱注满k升油后,轿车可行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.
(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);
(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?
如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1)、B(1,﹣4)、C(3,﹣2).
(1)△ABC绕原点O逆时针旋转90°,画出旋转后得到的△A1B1C1,并求边AC在旋转过程中扫过的图形面积;
(2)以原点O为位似中心,位似比为1:2,在y轴的右侧,画出△ABC放大后的图形△A2B2C2.如果点D(a,b)在线段AB上,那么请直接写出点D的对应点D2的坐标.
(1)计算:﹣2sin60°+|-
|;
(2)解方程:x2+4x﹣1=0.
每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的新机器可选,其中每台的价格、工作量如下表.
甲型机器 |
乙型机器 |
|
价格(万元/台) |
a |
b |
产量(吨/月) |
240 |
180 |
经调查:购买一台甲型机器比购买一台乙型机器多2万元,购买2台甲型机器比购买3台乙型机器少6万元.
(1)求a、b的值;
(2)若该公司购买新机器的资金不能超过110万元,请问该公司有几种购买方案?
(3)在(2)的条件下,若公司要求每月的产量不低于2040吨,请你为该公司设计一种最省钱的购买方案.
如图,在平面直角坐标系中,长方形ABCD的边BC∥x轴,如果A点坐标是(﹣1,2),C点坐标是(3,﹣2
).
(1)直接写出B点和D点的坐标B();D().
(2)将这个长方形先向右平移1个单位长度长度,再向下平移个单位长度,得到长方形A1B1C1D1,请你写出平移后四个顶点的坐标;
(3)如果Q点以每秒个单位长度的速度在长方形ABCD的边上从A出到到C点停止,沿着A﹣D﹣C的路径运动,那么当Q点的运动时间分别是1秒,4秒时,△BCQ的面积各是多少?请你分别求出来.
某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操四项体育活动课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:
(1)该校学生报名总人数有多少人?
(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?
(3)频数分布直方图补充完整.