杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一个点)的路线是抛物线y=-x2+3x+1的一部分.
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?说明理由.
一架竹梯长13m,如图(AB位置)斜靠在一面墙上,梯子底端离墙5m,
(1)求这个梯子顶端距地面有多高。
(2)如果梯子的顶端下滑4 m(CD位置),那么梯子的底部在水平方向也滑动了4 m吗?为什么?
已知:,求x的值。
计算:
四边形中,
∥
,
,
,
.点
为射线
上动点(不与点
、
重合),点
在直线
上,且
.记
,
,
,
.
(1)当点在线段
上时,写出并证明
与
的数量关系;
(2)随着点的运动,(1)中得到的关于
与
的数量关系,是否改变?若认为不改变,请证明;若认为会改变,请求出不同于(1)的数量关系,并指出相应的
的取值范围;
(3)若cos=
,试用
的代数式表示
.
已知直线与
轴交于点
,与
轴交于点
,将三角形
绕点
顺时针旋转90°,使点
落在点
,点
落在点
,抛物线
过点
、
、
,其对称轴与直线
交于点
.
(1)求抛物线的表达式;
(2)求的正切值;
(3)点在
轴上,且△
与△
相似,求点
的坐标.