(本小题满分12分)某中学准备在“植树节”来临之际,组织学生进行植树活动,学校学生会对一批花苗的高度(单位:cm),进行抽样检测,检测结果的频率分布直方图如图所示.根据标准, 花苗高度在区间[20,25)上的为一等品, 在区间[15,20)和区间[25,30)上的为二等品, 在区间[10,15)和[30,35)上的为三等品.
(Ⅰ)用频率估计概率, 现从该批花苗中随机抽取一株, 求其为二等品的概率;
(Ⅱ)已知检测结果为一等品的有6株,现随机从三等品中有放回地连续取两次,每次取1株,求取出的两株花苗中恰有1件的长度在区间[30,35)上的概率.
已知点A(1,m)在直线y=x上,并且点B(2,m)在直线y=kx+6上,试求出m与k的值.
已知二次函数,
,求这个函数的解析式.
已知函数
(1)讨论函数的单调区间;
(2)如果存在,使函数
在
处取得最小值,试求
的最大值.
在直角坐标系上取两个定点
,再取两个动点
,且
.
(Ⅰ)求直线与
交点的轨迹
的方程;
(Ⅱ)已知点(
)是轨迹
上的定点,
是轨迹
上的两个动点,如果直线
的斜率
与直线
的斜率
满足
,试探究直线
的斜率是否是定值?若是定值,求出这个定值,若不是,说明理由.
已知正方形的边长为2,
.将正方形
沿对角线
折起,
使,得到三棱锥
,如图所示.
(1)当时,求证:
;
(2)当二面角的大小为
时,求二面角
的正切值.