游客
题文

(本小题满分12分)甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区一模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩(发现两校学生的数学成绩都不低于70分),并作出了如下的频数分布统计表,规定考试成绩在内为优秀,甲校:

分组








频数
2
3
10
15
15

3
1

乙校:

分组








频数
1
2
9
8
10
10

3

(Ⅰ)由以上统计数据填写下面列联表,若按是否优秀来判断,是否有97.5%的把握认为两个学校的数学成绩有差异;

 
甲校
乙校
总计
优秀
 
 
 
非优秀
 
 
 
总计
 
 
 

 
(Ⅱ)根据抽样结果分别估计甲校和乙校的优秀率;若把频率作为概率,现从乙校学生中任取3人,求优秀学生人数的分布列和数学期望.









附:

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知关于的不等式的解集是
(1)求实数的值;
(2)若正数满足:,求的最大值。

已知,数列满足:

(1)用数学归纳法证明:
(2)已知
(3)设Tn是数列{an}的前n项和,试判断Tn与n-3的大小,并说明理由。

已知焦点在轴上,中心在坐标原点的椭圆C的离心率为,且过点
(1)求椭圆C的方程;
(2)直线分别切椭圆C与圆(其中)于A.B两点,求|AB|的最大值。

设函数.
(Ⅰ)若x=时,取得极值,求的值;
(Ⅱ)若在其定义域内为增函数,求的取值范围;
(Ⅲ)设,当=-1时,证明在其定义域内恒成立,并证明).

如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC平面ABC ,,已知AE与平面ABC所成的角为,且
(1)证明:平面ACD平面
(2)记表示三棱锥A-CBE的体积,求的表达式;
(3)当取得最大值时,求二面角D-AB-C的大小.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号