(本小题满分14分)如图,四棱锥中,
平面
,底面
是直角梯形,
为
中点.
(Ⅰ)求证://平面
;
(Ⅱ)若为线段
的中点,求证:
平面
.
(本小题满分7分)选修4—4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,轴非负半轴为极轴建立极坐标系.已知直线
过点
,斜率为
,曲线
:
.
(Ⅰ)写出直线的一个参数方程及曲线
的直角坐标方程;
(Ⅱ)若直线与曲线
交于
两点,求
的值.
(本小题满分7分)选修4—2:矩阵与变换
在平面直角坐标系中,矩阵对应的变换将平面上的任意一点
变换为点
.
(Ⅰ)求矩阵的逆矩阵
;
(Ⅱ)求圆在矩阵
对应的变换作用后得到的曲线
的方程.
(本小题满分14分)已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)若,数列
满足
.
(1)若首项,证明数列
为递增数列;
(2)若首项为正整数,且数列为递增数列,求首项
的最小值.
(本小题满分13分)如图,菱形的边长为
,现将
沿对角线
折起至
位置,并使平面
平面
.
(1)求证:;
(2)在菱形中,若
,求直线
与平面
所成角的正弦值;
(3)求四面体体积的最大值.
(本小题满分13分) 在平面直角坐标系中,点
与点
关于原点
对称,
是动点,且直线
与
的斜率之积等于
.
(1)求动点的轨迹方程;
(2)设直线和
与直线
分别交于
两点,问:是否存在点
使得
与
的面积相等?若存在,求出点
的坐标;若不存在,请说明理由.