已知函数、
.
(1)讨论函数的奇偶性(只写结论,不要求证明);
(2)在构成函数的映射
中,当输入值为
和2时分别对应的输出值为
和
,求
、
的值;
(3)在(2)的条件下,求函数(
)的最大值.
已知双曲线经过点M(),且以直线x= 1为右准线.
(1)如果F(3,0)为此双曲线的右焦点,求双曲线方程;
(2)如果离心率e=2,求双曲线方程.
已知椭圆:上的两点A(0,
)和点B,若以AB为边作正△ABC,当B变动时,计算△ABC的最大面积及其条件.
已知抛物线C的准线为x =(p>0),顶点在原点,抛物线C与直线l:y =x-1相交所得弦的长为3
,求
的值和抛物线方程.
求两焦点的坐标分别为(-2,0),(2,0),且经过点P(2,)的椭圆方程.
(本小题满分12分)过点M(1,1)作直线与抛物线交于A、B两点,该抛物线在A、B两点处的两条切线交于点P。(I)求点P的轨迹方程;(II)求△ABP的面积的最小值。