(本小题满分14分)已知椭圆的一个焦点与抛物线
的焦点重合,椭圆的离心率为
且过点
.
(Ⅰ)求椭圆和抛物线
的标准方程;
(Ⅱ)设直线过椭圆的右焦点
且与椭圆交于
两点,在椭圆上
是否存在点
,使得当
绕
转到某一位置时,有
成立?若存在,求出所有的
的坐标与
的方程;若不存在,说明理由.
如图①,在边长为1的等边中,
分别是
边上的点,
,
是
的中点,
与
交于点
,将
沿
折起,得到如图②所示的三棱锥
,其中
.
(1) 证明://平面
;
(2) 证明:平面
;
(3) 当时,求三棱锥
的体积
.
有一个容量为100的某校毕业生起始月薪的样本数据的分组及各组的频数如下:
起始月薪(百元) |
[13,14) |
[14,15) |
[15,16) |
[16,17) |
[17,18) |
[18,19) |
[19,20) |
[20,21] |
频数 |
7 |
11 |
26 |
23 |
15 |
8 |
4 |
6 |
(1)列出样本的频率分布表;
(2)画出频率分布直方图和频率分布折线图;
(3)根据频率分布估计该校毕业生起始月薪低于2000元的频率.
正项数列{an}满足.
(1)求数列{an}的通项公式an;
(2)令,求数列{bn}的前n项和Tn.
在△中,内角
、
、
的对边分别是
、
、
,且
.
(Ⅰ)求;
(Ⅱ)设,
,求
的值.
某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元时,床位可以全部租出,当床价高于10元时,每提高1元,将有3张床位空闲.为了获得较好的效益,该宾馆要给床位定一个合适的价格,条件是:①要方便结账,床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好.若用x表示床价,用y表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入).
(1)把y表示成x的函数,并求出其定义域;
(2)试确定该宾馆将床位定价为多少时,既符合上面的两个条件,又能使净收入最多?