在梯形ABCD中,AD∥BC,BA⊥AC,∠ABC = 450,AD = 2,BC = 6,以BC所在直线为x轴,建立如图所示的平面直角坐标系,点A在y轴上.
(1)求过A、D、C三点的抛物线的解析式;
(2)求△ADC的外接圆的圆心M的坐标,并求⊙M的半径;
(3)E为抛物线对称轴上一点,F为y轴上一点,求当ED+EC+FD+FC最小时,EF的长;
(4)设Q为射线CB上任意一点,点P为对称轴左侧抛物线上任意一点,问是否存在这样的点P、Q,使得以P、Q、C为顶点的三角形与△ADC相似?若存在,直接写出点P、Q的坐标,若不存在,则说明理由.
1
2
3
某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为且过顶点C(0,5)(长度单位:m)
(1)直接写出c的值;
(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5 m的地毯,地毯的价格为20元 /
,求购买地毯需多少元?
(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5 m,求斜面EG的倾斜角∠GEF的正切值.
如图,△ABC内接于⊙O,D是弧AC的中点,求证:CD2=DE?DB。
如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE.求证:∠D = ∠B.