游客
题文

某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为且过顶点C(0,5)(长度单位:m)

(1)直接写出c的值;
(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5 m的地毯,地毯的价格为20元 / ,求购买地毯需多少元?
(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5 m,求斜面EG的倾斜角∠GEF的正切值.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

小江计划将池塘的鱼在年底打捞出来运往某地出售,为了预订车辆运输,必须知道鱼塘内共有多少千克的鱼,他第一次从鱼塘中打捞出100条鱼,共240kg,作上记号后,又放回鱼塘.过了两天,又捞出200条鱼,共510kg,且发现其中有记号的鱼只有4条.
(1)估计鱼塘中总共有多少条鱼?
(2)若平均每千克鱼可获利润5元,预计小江今年卖鱼总利润约多少钱?

解方程:

如图,已知A,B两点是直线AB与轴的正半轴,轴的正半轴的交点,且OA,OB的长分别是的两个根(OA>OB),射线BC平分∠ABO交轴于C点,若有一动点P以每秒1个单位的速度从B点开始沿射线BC移动,运动时间为t秒.

(1)设△APB和△OPB的面积分别为S1,S2,求S1∶S2
(2)求直线BC的解析式;
(3)在点P的运动过程中,△OPB可能是等腰三角形吗?若可能,直接写出时间t的值,若不可能,请说明理由.

某市场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元。为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。求:
(1)若商场平均每天要盈利1200元,且让顾客感到实惠,每件衬衫应降价多少元?
(2)要使商场平均每天盈利最多,请你帮助设计降价方案。

如图在平行四边形ABCD的对角线AC的延长线上取两点E、F,使EA=CF,求证:四边形EBFD是平行四边形.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号