某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为且过顶点C(0,5)(长度单位:m)
(1)直接写出c的值;
(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5 m的地毯,地毯的价格为20元 /
,求购买地毯需多少元?
(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5 m,求斜面EG的倾斜角∠GEF的正切值.
如图,我国甲、乙两艘海监执法船某天在某岛附近海域巡航,某一时刻这两艘船分别位于该岛正西方向的A处和正东方向的B处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向,位于B处北偏西44°方向.若甲、乙两船分别沿AC,BC方向航行,且平均速度分别是20海里/时,18海里/时,试估算哪艘船先赶到C处.
(参考数据:cos59°≈0.52,cos44°≈0.72)
如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km,BC段与AB,CD段都垂直,长为10km,CD段长为30km,求两高速公路之间的距离(结果保留根号).
图①中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图②.在图②中,每个菱形的边长为10cm,锐角为60°.
(1)连接CD,EB,猜想它们的位置关系并加以证明;
(2)求A,B两点之间的距离(结果取整数,可以使用计算器).
(参考数据:,
,
)
如图,为了知道空中一静止的广告气球A的高度,小宇在B处测得气球A的仰角为18°,他向前走了20m到达C处后,再次测得气球A的仰角为45°,已知小宇的眼睛距离地面1.6m,求此时气球A距离地面的高度(结果精确到0.1m,参考数据:tan18°≈0.3249).
在△ABC中,AD是BC边上的高,∠C=45°,,AD=1.求BC的长.