已知数列满足
。
(1)求的通项公式;
(2)设,求数列
前
项和
。
如图,在平面直角坐标系中,点
,直线
。设圆
的半径为
,圆心在
上。
(1)若圆心也在直线
上,过点
作圆
的切线,求切线的方程;
(2)若圆上存在点
,使
,求圆心
的横坐标
的取值范围。
如图,在矩形ABCD中,AB = 4,BC = 3,沿对角线AC把矩形折成二面角D-AC-B,并且D点在平面ABC内的射影落在AB上.
(1)证明:AD⊥平面DBC;
(2)求三棱锥D-ABC的体积.;
(3)若在四面体D-ABC内有一球,当球的体积最大时,球的半径是多少?
设数列满足:
,
,
.
(Ⅰ)求的通项公式及前
项和
;
(Ⅱ)已知是等差数列,
为前
项和,且
,
,求
.
如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.
求证:(1)平面EFG∥平面ABC.
(2)BC⊥SA.