(本小题满分10分)选修4—4:坐标系与参数方程选讲.
已知直线经过点,倾斜角
,圆C的极坐标方程为
(1)写出直线的参数方程,并把圆的方程化为直角坐标方程;
(2)设与圆相交于两点
,求点
到
两点的距离之积.
现有编号分别为1,2,3,4,5,6,7, 8,9的九道不同的数学题。某同学从这九道题中一次随机抽取两道题,每题被抽到的概率是相等的,用符号表示事件“抽到两 题的编号分别为
,且
<
”.
(1)共有多少个基本事件?并列举出来;
(2)求该同学所抽取的两道题的编号之和小于17但不小于11的概率.
已知椭圆经过点
,且两焦点与短轴的两个端点的连线构成一正方形.
(1)求椭圆的方程;
(2)直线与椭圆
交于
,
两点,若线段
的垂直平分线经过点
,求
(为原点)面积的最大值.
哈六中体育节进行定点投篮游戏,已知参加游戏的甲、乙两人,他们每一次投篮投中的概率均为,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.
(1)求甲同学至少有4次投中的概率;
(2)求乙同学投篮次数的分布列和数学期望.
已知盘中有编号为A,B,C,D的4个红球,4个黄球,4个白球(共 12个球)现从中摸出4个球(除编号与颜色外球没有区别)
(1)求掐好包含字母A, B,C,D的概率;
(2)设摸出的4个球中出现的颜色种数为随机变量X.求X的分布列和期望E(X).
为了解七班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球 |
不喜爱打篮球 |
合计 |
|
男生 |
5 |
||
女生 |
10 |
||
合计 |
50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为,求
的分布列与期望.
下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05[ |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中
)