已知圆 经过椭圆Γ∶
的右焦点F和上顶点B.
(1)求椭圆Γ的方程;
(2)过原点O的射线l与椭圆Γ在第一象限的交点为Q,与圆C的交点为P,M为OP的中点,求 的最大值.
已知抛物线和点M(2,2),若抛物线L上存在不同的两点A、B满足
。
(1)求实数p的取值范围;
(2)当时,抛物线L上是否存在异于A、B的点C,使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线?若存在,求出点C的坐标;若不存在,请说明理由。
已知函数
(1)当a=-1时,求函数f(x)的单调区间;
(2)若函数的图象与直线y=ax只有一个公共点,求实数b的取值范围。
如图,FD垂直于矩形ABCD所在平面,CE//DF, ∠DEF=900。
(1)求证:BE//平面ADF;(2)若矩形ABCD的一个边AB="3," 另一边BC=2
,EF=2
,求几何体ABCDEF的体积。
某园林局对1000株树木的生长情况进行调查,其中槐树600株,银杏树400株. 现用分层抽样方法从这1000株树木中随机抽取100株,其中银杏树树干周长(单位:cm)的抽查结果如下表:
树干周长(单位:cm) |
![]() |
![]() |
![]() |
![]() |
株数 |
4 |
18 |
![]() |
6 |
(I)求的值 ;
(II)若已知树干周长在30cm至40cm之间的4株银杏树中有1株患有虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止.求排查的树木恰好为2株的概率.
设角是
的三个内角,已知向量
,
,且
.
(Ⅰ)求角的大小; (Ⅱ)若向量
,试求
的取值范围