(本小题共14分)已知定义在上的函数(1)求证:存在唯一的零点,且零点属于(3,4);(2)若,且对任意的1恒成立,求的最大值.
在锐角中,角A、B、C所对的边分别是a、b、c,为△ABC的外心. (1)若,求的值; (2)已知,,,求的值.
己知函数,且,, (Ⅰ)求的最大值与最小值; (Ⅱ)求的单调增区间.
设函数,若对任意,都有()恒成立. (1)求a的取值范围; (2)求证:对任意,.
有编号为1,2,3,…,n的n个学生,入坐编号为1,2,3,…n的n个座位.每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为ξ,已知ξ=2时,共有6种坐法. (1)求n的值; (2)求随机变量ξ的概率分布列和数学期望.
在数列{an}中,,且, (Ⅰ)求的值; (Ⅱ)归纳的通项公式,并用数学归纳法证明.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号