(本小题满分12分)如图1,平面四边形ABCD关于直线AC对称,,
,
,把△ABD沿BD折起(如图2),使二面角
为直二面角.如图2,
(Ⅰ)求AD与平面ABC所成的角的余弦值;
(Ⅱ)求二面角的大小的正弦值.
在数列中,其前
项和为
,满足
.
(1)求数列的通项公式;
(2)设(
为正整数),求数列
的前
项和
.
如图,四棱锥中,
面
,
、
分别为
、
的中点,
,
.
(1)证明:∥面
;
(2)求面与面
所成锐角的余弦值.
袋中装有大小相同的黑球和白球共个,从中任取
个都是白球的概率为
.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取 ,每次摸取
个球,取出的球不放回,直到其中有一人取到白球时终止.用
表示取球终止时取球的总次数.
(1)求袋中原有白球的个数;
(2)求随机变量的概率分布及数学期望
.
已知向量,
,
.
(1)求函数的单调递减区间;
(2)在中,
分别是角
的对边,
,
,
若,求
的大小.
过椭圆的左顶点
作斜率为2的直线,与椭圆的另一个交点为
,与
轴的交点为
,已知
.
(1)求椭圆的离心率;
(2)设动直线与椭圆有且只有一个公共点
,且与直线
相交于点
,若
轴上存在一定点
,使得
,求椭圆的方程.