如图,E是正方形ABCD中AD边的中点,并延长BA到点F,使AF=AE,
(1)△AFD怎样变换得到△AEB?
(2)分析BE与DF之间的关系?
已知,求代数式
的值.
如图,已知∠BAC=∠BCA,∠BAE=∠BCD=90°,BE=BD.求证:∠E=∠D.
解不等式,并把它的解集在数轴上表示出来.
如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1、L2互称为“友好”抛物线.
(1)一条抛物线的“友好”抛物线有_______条.
A.1 | B.2 | C.3 | D.无数 |
(2)如图2,已知抛物线L3:与y轴交于点C,点C关于该抛物线对称轴的对称点为D,请求出以点D为顶点的L3的“友好”抛物线L4的表达式;
(3)若抛物线的“友好”抛物线的解析式为
,请直接写出
与
的关系式为.
在△ABC中,AB=BC=2,∠ABC=90°,BD为斜边AC上的中线,将△ABD绕点D顺时针旋转α(0°<α<180°)得到△EFD,其中点A的对应点为点E,点B的对应点为点F.BE与FC相交于点H.
(1)如图1,直接写出BE与FC的数量关系:____________;
(2)如图2,M、N分别为EF、BC的中点.求证:MN= ;
(3)连接BF,CE,如图3,直接写出在此旋转过程中,线段BF、CE与AC之间的数量关系:.