如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.
(1)求抛物线的解析式;
(2)连接BE,求h为何值时,△BDE的面积最大;
(3)已知一定点M(-2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形?若存在,请求出h的值和点G的坐标;若不存在,请说明理由.
你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度(
四面条的粗细(横截面积)S(
的反比例函数,其图象如图所示.
(1)写出与S的函数关系式;
(2)求当面条粗1.6时,面条的总长度是多少米?
观察下列勾股数:
第一组:3=2×1+1, 4=2×1×(1+1), 5=2×1×(1+1)+1;
第二组:5=2×2+1, 12=2×2×(2+1), 13=2×2×(2+1)+1;
第三组:7=2×3+1, 24=2×3×(3+1), 25=2×3×(3+1)+1;
第三组:9=2×4+1, 40=2×4×(4+1), 41=2×4×(4+1)+1;
……
观察以上各组勾股数的组成特点,你能求出第七组的各应是多少吗?第
组呢?
如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D处上爬到树顶A处,利用拉在A处的滑绳AC,滑到C处,另一只猴子从D处滑到地面B,再由B跑到C,已知两猴子所经路程都是15m,求树高AB.
如图,E、F分别是正方形ABCD中BC和CD边上的点,且AB=4,CE=BC,F为CD的中点,连接AF、AE,问△AEF是什么三角形?请说明理由.
如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.