折纸的思考.
(操作体验)
用一张矩形纸片折等边三角形.
第一步,对折矩形纸片 (图①),使 与 重合,得到折痕 ,把纸片展平(图②).
第二步,如图③,再一次折叠纸片,使点 落在 上的 处,并使折痕经过点 ,得到折痕 ,折出 、 ,得到 .
(1)说明 是等边三角形.
(数学思考)
(2)如图④,小明画出了图③的矩形 和等边三角形 .他发现,在矩形 中把 经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.
(3)已知矩形一边长为 ,另一边长为 ,对于每一个确定的 的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的 的取值范围.
(问题解决)
(4)用一张正方形铁片剪一个直角边长分别为 和 的直角三角形铁片,所需正方形铁片的边长的最小值为 .
已知函数 为常数).
(1)该函数的图象与 轴公共点的个数是 .
或2
(2)求证:不论 为何值,该函数的图象的顶点都在函数 的图象上.
(3)当 时,求该函数的图象的顶点纵坐标的取值范围.
如图,港口 位于港口 的南偏东 方向,灯塔 恰好在 的中点处.一艘海轮位于港口 的正南方向,港口 的正西方向的 处,它沿正北方向航行 到达 处,测得灯塔 在北偏东 方向上,这时, 处距离港口 有多远?(参考数据: , ,
解不等式组
请结合题意,完成本题的解答.
(1)解不等式①,得 ,依据是: .
(2)解不等式③,得 .
(3)把不等式①、②和③的解集在数轴上表示出来.
(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集 .
计算 .