游客
题文

问题提出:平面内不在同一条直线上的三点确定一个圆.那么平面内的四点(任意三点均不在同一直线上),能否在同一个圆呢?
初步思考:设不在同一条直线上的三点A、B、C确定的圆为⊙O. 
⑴当C、D在线段AB的同侧时,

如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是           
如图②,若点D在⊙O内,此时有∠ACB   ∠ADB;
如图③,若点D在⊙O外,此时有∠ACB   ∠ADB.(填“=”、“>”或“<”);
由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件:             
类比学习:(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.

如图④,此时有             ,       
如图⑤,此时有             
如图⑥,此时有             
由上面的探究,请用文字语言直接写出A、B、C、D四点在同一个圆上的条件:
                                                                  .    
拓展延伸:(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线?
已知:如图,AB是⊙O的直径,点C在⊙O上.
求作:CN⊥AB.
作法:①连接CA, CB;
②在上任取异于B、C的一点D,连接DA,DB;
③DA与CB相交于E点,延长AC、BD,交于F点;
④连接F、E并延长,交直径AB于M;
⑤连接D、M并延长,交⊙O于N.连接CN. 则CN⊥AB.
请按上述作法在图④中作图,并说明CN⊥AB的理由.(提示:可以利用(2)中的结论)

科目 数学   题型 解答题   难度 中等
知识点: 圆幂定理
登录免费查看答案和解析
相关试题

(本题4分)右图是的正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.

已知:如图①,四边形是正方形,是等边三角形,为对角线(不含点)上任意一点,将绕点逆时针旋转得到,连接

(I)求证:
(II)①当点在何处时,的值最小;
②当点在何处时,的值最小,并说明理由;

(III)当的最小值为时,求正方形的边长。

如图,中,,⊙O为它的内切圆,切点分别是
(I)若,求:的内切圆的半径;

(II)若的内切圆半径的周长为,则的值为
(III)若,求

如图所示,要设计一座1m高的抽象人物雕塑,使雕塑的上部(腰以上)AC与下部(腰以下)BC的高度比,等于下部与全部(全身)AB的高度比,雕塑的下部应设计为多高?

已知AB与⊙O相切于点C,OA=OB,OA,OB与⊙O分别交予点D,E
(I)如图①,若⊙O的直径为8,AB=10,求OA得长(结果保留根号);
(II)如图②,连接CD,CE,若四边形ODCE为菱形,求的值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号