已知10m=3,10n=2,试求102m﹣n的值.
某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳
x2元的附加费,设月利润为w外(元).
(1)当x=1000时,y=元/件,w内=元;
(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求∠P的度数;
(3)点M是弧AB的中点,CM交AB于点N,AB=4,求线段BM、CM及弧BC所围成的图形面积.
学校240名师生集体外出活动,准备租用45座大客车或30座小客车,共租用6辆. 据调查:租用1辆大车和2辆小车共需租车费1000元;租用2辆大车1辆小车共需租车费1100元.
(1)求大、小车每辆的租车费各是多少元?
(2)若总租车费用不超过2300元,求最省钱的租车方案.
在Rt△POQ中,OP=OQ=4,M是PQ的中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.
(1)求证:MA=MB;
(2)连接AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
下列图表是某校今年参加中考体育的男生1000米跑、女生800米跑的成绩中分别抽取的10个数据.
考生 编号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
男生 成绩 |
3′05〞 |
3′11〞 |
3′53〞 |
3′10〞 |
3′55〞 |
3′30〞 |
3′25〞 |
3′19〞 |
3′27〞 |
3′55〞 |
(1)求出这10名女生成绩的中位数、众数和极差;
(2)按规定,男生1000米跑成绩不超过3′35〞就可以得满分.该校学生有490人,男生比女生少70人. 请你根据上面抽样的结果,估算该校考生中有多少名男生该项考试得满分?