如图,107国道OA和320国道OB在我市相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA,OB的距离相等且使PC=PD,用尺规作图法作出货站P的位置(不写作法,保留痕迹)
已知二次函数
(1)若 , ,
①求该二次函数图象的顶点坐标;
②定义:对于二次函数 ,满足方程 的 的值叫做该二次函数的"不动点".求证:二次函数 有两个不同的"不动点".
(2)设 ,如图所示,在平面直角坐标系 中,二次函数 的图象与 轴分别相交于不同的两点 , , , ,其中 , ,与 轴相交于点 ,连结 ,点 在 轴的正半轴上,且 ,又点 的坐标为 ,过点 作垂直于 轴的直线与直线 相交于点 ,满足 . 的延长线与 的延长线相交于点 ,若 ,求二次函数的表达式.
四边形 是 的圆内接四边形,线段 是 的直径,连结 、 .点 是线段 上的一点,连结 、 ,且 , , 的延长线与 的延长线相交于点 .
(1)求证:四边形 是平行四边形;
(2)若 , ,
①求证: 为等腰直角三角形;
②求 的长度.
如图所示,在平面直角坐标系 中,等腰 的边 与反比例函数 的图象相交于点 ,其中 ,点 在 轴的正半轴上,点 的坐标为 ,过点 作 轴于点 .
(1)已知一次函数的图象过点 , ,求该一次函数的表达式;
(2)若点 是线段 上的一点,满足 ,过点 作 轴于点 ,连结 ,记 的面积为 ,设 ,
①用 表示 (不需要写出 的取值范围);
②当 取最小值时,求 的值.
如图所示,已知正方形 的顶点 为正方形 对角线 、 的交点,连接 、 .
(1)求证: ;
(2)若 ,正方形 的边长为2,线段 与线段 相交于点 , ,求正方形 的边长.
某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温 有关,现将去年六月份(按30天计算)的有关情况统计如下:
(最高气温与需求量统计表)
最高气温 (单位: |
需求量(单位:杯) |
|
200 |
|
250 |
|
400 |
(1)求去年六月份最高气温不低于 的天数;
(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;
(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温 满足 (单位: ,试估计这一天销售这种鲜奶所获得的利润为多少元?