如图,已知平面上有四个点A 、B、C、D.
(1)连结AB,并画出AB的中点E;
(2)作射线AD;
(3)作直线BC与射线AD交于点F.
如图,在平面直角坐标系中,⊙A与x轴相交于C(﹣2,0),D(﹣8,0)两点,与y轴相切于点B(0,4).
(1)求经过B,C,D三点的抛物线的函数表达式;
(2)设抛物线的顶点为E,求证:直线CE与⊙A相切;
(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标.
如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒(0<t<),连接MN.
(1)若△BMN与△ABC相似,求t的值;
(2)连接AN,CM,若AN⊥CM,求t的值.
(为方便答题,可在答题卡上画出你认为必要的图形)
如图,过原点的直线和
与反比例函数
的图象分别交于两点A,C和B,D,连结AB,BC,CD,DA.
(1)四边形ABCD一定是 四边形;(直接填写结果)
(2)四边形ABCD可能是矩形吗?若可能,试求此时k1和k2之间的关系式;若不可能,说明理由;
(3)设P(,
),Q(
,
)(x2 > x1 > 0)是函数
图象上的任意两点,
,
,试判断
,
的大小关系,并说明理由.
如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.
(1)试探究筝形对角线之间的位置关系,并证明你的结论;
(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD,AC为对角线,BD=8.
①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在, 请说明理由;
②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE.当四边形ABED为菱形时,求点F到AB 的距离.
如图,过原点的直线和
与反比例函数
的图象分别交于两点A,C和B,D,连结AB,BC,CD,DA.
(1)四边形ABCD一定是 四边形;(直接填写结果)
(2)四边形ABCD可能是矩形吗?若可能,试求此时和
之间的关系式;若不可能,说明理由;
(3)设P(,
),Q(
,
)(
)是函数
图象上的任意两点,
,
,试判断
,
的大小关系,并说明理由.