游客
题文

在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆AB=2米,它的影子BC=1.6米,木杆PQ的影子有一部分落在墙上,PM=1.2米,MN=0.8米,求木杆PQ的长度.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图①,半径为R,圆心角为n°的扇形面积是,由弧长l=,得=•R=lR.通过观察,我们发现S扇形=lR类似于S三角形=×底×高.
类比扇形,我们探索扇环(如图②,两个同心圆围成的圆环被扇形截得的一部分交作扇环)的面积公式及其应用.

(1)设扇环的面积为S扇环的长为的长为,线段AD的长为h(即两个同心圆半径R与r的差).类比S梯形=×(上底+下底)×高,用含,h的代数式表示S扇环,并证明;
(2)用一段长为40m的篱笆围成一个如图②所示的扇环形花园,线段AD的长h为多少时,花园的面积最大,最大面积是多少?

如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD.

(1)AB=CD;
(2)DP•BD=AD•BC;
(3)

如图1,AB为⊙O的直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,垂足为P,过点B的直线与线段AD的延长线交于点F,且∠F=∠ABC.

(1)若CD=,BP=4,求⊙O的半径;
(2)求证:直线BF是⊙O的切线;
(3)当点P与点O重合时,过点A作⊙O的切线交线段BC的延长线于点E,在其它条件不变的情况下,判断四边形AEBF是什么特殊的四边形?请在图2中补全图象并证明你的结论.

(·辽宁辽阳)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.

(1)求证:直线FG是⊙O的切线;
(2)若AC=10,cosA=,求CG的长.

如图,四边形ABCD为矩形,E为BC边中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF.

(1)求证:CF与⊙O相切;
(2)若AD=2,F为AE的中点,求AB的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号